A Cloud in Every Home

Host servers at home with zero sysadmin skills

\$ whoami

Nolan Leake

- Linux user/developer since 1995
- Hosted my own email/web/etc since 2001.
- Cumulus Linux Linux for network switches
 - Debian derived
 - Commercially supported, w/ wide deployment

• Who here has a home server, a colocated server, or a VM?

David Lippincott for Chassis Plans (CC BY 3.0)

Who runs their own mail server?

or

Uses a mail server run by friends/family?

Who used to run their own mail server, but stopped?

へ(ツ)_/

 Who would run their own mail server, if it required no OS/software setup and maintenance, and minimal hardware setup and maintenance?

pixabay.com (CC0)

Motivations/Goals

- Store your data in your own home.
 - Stronger 4th amendment protection
 - Really obvious if criminals or government agents do this:

Photo by US Army (public domain)

Motivations/Goals

- Store your data on hardware you own.
 - No one has an immediate pressing need to do abusive things to "monetize" you to pay for the storage you're using.
 - Even ignoring privacy, eliminating ads, tracking and other "dark pattern" tricks will result in a better experience!

Motivations/Goals

- Must provide similarly easy experience as 3rd party hosted cloud services like gmail.
 - No software administration
 - Absolute minimum hardware administration.
 - Replace failed storage devices
 - Replace failed server
- Must handle this:

- Use techniques developed by Internet giants that allow <100 people to manage a >100,000 server cluster.
 - These techniques are designed for large companies with huge clusters attacking massive problems.
 - We can adapt them to be both simpler and more appropriate for human/family scale problems.

- Use techniques developed for smartphone apps to allow non-technical users to install and use software.
 - Self-contained applications
 - Isolated
 - Automatic updates
 - Simplified config and sane defaults

- Use cheap hardware.
 - Raspberry Pi 3 is \$35. Old laptops are cheap.
 - Even non-tech-nerds have spare USB flash sticks.
 - If you have to buy one, a 64GB stick is \sim \$10.

	Price: US \$10.90 / piece
Golden	Capacity: 8GB 16GB 32GB 64GB 128GB
	Color: Sliver Gold
	Shipping: Free Shipping to United States via ePacket Estimated Delivery Time: 12-20 days ?
	Quantity: – 1 + piece (868 pieces available)
r to zoom in	Total Price: US \$10.90
	Buy Now Add to Cart

- Immutable images, with explicit data volumes.
 - Easier updates.
 - Harder to corrupt while running.
 - Filesystems are writable or executable, never both.
- Not just application containers Host OS too.

• Encrypted overlay network: $\overline{\Phi}$ ZEROTIER

- Connects server, laptops, tablets and phones.
 - Punches holes through NATs.
 - Non-public services aren't exposed on Internet.

- Isolate different parts of the system, different applications, and parts of applications in separate containers with separate networks.
 - Ephemeral containers like SMTP and Spamassassin can be started on demand and immediately torn down.
 - An email that exploits a Spamassassin bug:
 1)can't see the mail spool.

2) can't see previous or subsequent emails.

3) can't attack other internal services, like IMAP.

- If you're emailing someone else with this setup, your message is only plaintext on their client, their server, your server and your client.
 - Never plaintext on any network.
 - Never plaintext on any disk.
- Not quite Signal-level end-to-end cryptography, but a lot better than normal email.
 - But of course, all is lost if you're talking to a gmail user.

Problem One

- Residential ISPs usually block outgoing SMTP.
 - even if they don't recievers ignore mail from residential IPs because of SPAM.
- Run a proxy on a clean IP
 - The TLS session is negotiated from server to server
 - So the proxy never sees the email.
 - It does get some insight into who is emailing whom.

Problem Two

• We've built an open-relay – A SPAM CANNON!

- Must rate limit.
 - But due to mailserver to mailserver TLS, we can't see the message!
 - Is a 10MB SMTP session to gmail one big picture going to one person, or a 1KB spam going to 5000 people?
 - Solution: The replies back from the destination server are proportional in size to the number of recipients.
 - >>> RCPT TO: Whoever <whoever@whereever.com>
 << 250 2.1.5 <whoever@whereever.com>... Recipient ok
 - So we rate limit based on the number of bytes coming back.

Problem Three

- A few ISPs block *incoming* SMTP, either due to misguided policy or CGNAT.
 - Also, some people will be unable or unwilling to enable port forwarding of port 25 on their home router.
- Need a reverse version of the proxy, that determines which home server IP the incoming mail is for using the "EHLO" name.
 - EHLO sends the MX server's name before STARTTLS starts encrypting the session.

DEMO

What's missing

- What you just saw is between a proof-ofconcept and Alpha.
- What remains to be done to make this Beta?

DNS and DynDNS

- Right now I used a 3rd party DynDNS
 - Would be better to bring this in-house to reduce the number of accounts to create.
- Internal services on the overlay must be referred to by IP.
 - It is straightforward to setup automatic DNS.
 - But Let's Encrypt doesn't support wildcard certs yet.
 - Supposedly coming March 5th
 - That's 5 days ago.

Better integration with ZeroTier

- Must specify API key in file on SDCard.
- Must manually install app on phones/laptops.
- Must manually authorize new phones/laptops.
- Automate all this!

App Store

- I baked the email app into the OS.
 - This is obviously not scalable.
- Need to build an app store
 - Simple UI (Web, iOS app, Android app) to choose apps.
 - Server downloads application containers.

Supply-chain Security/Transparency

- Reproducable Builds
 - Thanks to basing on Debian, we're $\frac{1}{2}$ way there.
- Open Source firmware
 - Almost there for Raspberry Pi3
 - Still a ways to go on most x86 PC platforms.

Package More Apps!

- Email is just the start
- Backend services for various IoT devices
- Seafile, SyncThing, or NextCloud (Dropbox)
- Wordpress
- Mastodon instance (Twitter)
- Gitlab (Github)
- Mattermost (Slack)
- More! There is lots of great Open Source software.

Backup/Restore

- Now, if your house burns down, you're screwed.
 - I mean, you have no email. This is an emergency!
- Global backup scheme.
 - Encrypt, stripe, and redundantly encode files.
 - Spread the encrypted fragments to thousands of other users.
 - In return, you store fragments for them.
 - Encryption key never leaves your house.
 - Well, actually, you should probably have a few copies, perhaps at a trusted family member's house or in a safe-deposit box.

Sound Interesting?

- Gitlab: https://git.sigbus.net/projectx/os
- IRC: #prjx on Freenode
- Want to be notified when there are pre-built images that are more fully baked?
 - Email prjx@sigbus.net and I'll let you know.